OPTICS FOR
 ULIRIFIST IASERS

OPT(1DMAN

YOUR SIDEKICK FOR LASER OPTIGS DEVELOPMENT

TABLE OF
 CONTENTS

HIGHLY CUSTOMIZED AND APPIICATION OPTIMIZED LASER OPTICS FOR DEMANDING APPIICATIONS FROM DEMANDING MARKETS

Optics for DPSS Lasers

Optics for Defense Applications and LIDARs

Research \& Developement

Optics for Medical Laser Systems

Optics for multi kW Laser Systems

Optics for Ultrafast Lasers

Optics for micromachining and macromachining systems

Optics for Biomedical Applications

ABOUT OPTOMAN

Born in 2017 in Vilnius, Lithuania, OPTOMAN is a coatings SuperHero, who designs, develops and manufactures advanced, high accuracy and repeatability thin film coatings by lon-beam sputtering (IBS) technology. By digging deep into each application, OPTOMAN provides custom, applicationoptimized optics for academia and industry.

OPTOMAN as your sidekick is always willing and ready to help you with finding optimized solutions (ultra)fast and back you up in critical situations and finally get the job done as was promised.

What makes OPTOMAN different?

Imagine you're the high-tech SuperHero, say Batman, and you need high-tech gadgets. You can try and find appropriate gadgets to buy, maybe even an Iron Man suit, but you're the Batman, you're unique, you have kick-ass martial arts skills and your gadgets need to support them. That's when Batman turns to Alfred, who develops gadgets, consults you and basically shares the same KPI - protect Gotham. OPTOMAN is Alfred.

92 \% OF CUSTOMERS CONSIDER OPTOMAN A STRATEGIC PARTNER

(in OPTOMAN terms - a sidekick for laser optics development)*

CORE COMPETENCE

- Ultrafast laser optics.
- High LIDT and enhanced lifetime.
- Durable and environmentally stable coatings.
- Extreme low-loss coatings.
- Agility, flexibility, and quick prototyping.

CAPABILITIES

SuperHero Power Coatings

High reflectance coatings:

- >1 J/cm² @ $1030 \mathrm{~nm}, 500 \mathrm{fs}, 10^{5}$-on- 1 ;
- > $11.20 \mathrm{~J} / \mathrm{cm}^{2} @ 355 \mathrm{~nm}, 6 \mathrm{~ns}, 10^{3}-\mathrm{on}-1$;
- > $0.484 \mathrm{~J} / \mathrm{cm}^{2} @ 343 \mathrm{~nm}, 300 \mathrm{fs}, 10^{7}-\mathrm{on}-1$.

Anti-reflective coatings:

- > $40 \mathrm{~J} / \mathrm{cm}^{2}$ @ $1064 \mathrm{~nm}, 10 \mathrm{~ns}, 10^{3}-$ on- 1 ;
- > $12.66 \mathrm{~J} / \mathrm{cm}^{2} @ 355 \mathrm{~nm}, 6 \mathrm{~ns}, 10^{3}$-on-1.

Polarizing coatings:

- > $18.7 \mathrm{~J} / \mathrm{cm}^{2} @ 1064 \mathrm{~nm}, 10 \mathrm{~ns}, 10^{3}-\mathrm{on}-1$.

Optics for Mid-IR applications

- Low absorption coatings.
- Spectral range 1-5 $\mu \mathrm{m}$.
- Broadband turning/bending mirrors with R>99.8\%.
- Chirped and GTI mirrors for ultrafast laser systems.
- Coatings on CaF $_{2}$, MgF $_{2}$, YAG, Sapphire, Silicon substrates.

Extreme low-loss coatings:

- Super Mirrors HR (R>99.995\%)
- Precision Thin-film Polarizers (Tp/Ts ratio > 10000:1).
- R<0.01\% Anti-Reflective Coatings.
- Coating with an absorption loss of <1 ppm.

Application oriented optics for:

- Medical lasers (Er:YAG, Ho:YAG, Nd:YAG, Alexandrite...).
- Mirrors for galvo-scanners (Silicon, UVFS...).
- Membrane mirrors for deformable mirror assemblies.
- OPO, OPA, OPCPA.
- Defense \& Aerospace industries.
- Mirrors for multipass cells (MPC).

Bread and butter

- Laser line and broadband mirrors (HR>99.99\%).
- R<0.05\% Anti-Reflective Coatings.
- Thin Film Polarizers
(Tp/Ts extinction ratio > 1000:1).
- Pump, dichroic Mirrors (eg. HR>99.9\% + HT>99\%).
- Output couplers, plate beam splitters (eg. PR $50 \%+/-1 \%$).
- Spectral range $193 \mathrm{~nm}-5000 \mathrm{~nm}$.
- Component size: from 3 mm up to 300 mm .
- Coatings can be applied on plane, spherical, cylindrical, aspherical, elliptical surfaces, prisms and other exotic configurations.
- Ultrafast (express) prototyping service available.

Some of cool stuff we do:

- Knife-edge coated optics (edge chips <50 $\mu \mathrm{m}$).
- 100% coated aperture components.
- Segmented/Masked coatings.
- Stress-compensated coatings (PV flatness < $\lambda / 20$ @ 633 nm).
- Coatings on multi-surface prisms.
- Coatings on micro lens assemblies.
- Coatings on big size wafers (up to a diameter of 300 mm).
- Zero phase shift mirrors.
- Coatings on metal substrates.
- Optical assemblies.
- Coatings on fast axis collimators (FAC).
- Coatings on fibers and end caps.

R MIRRORS FOR BIG 8 SCARY FS, PS LASERS

High laser power levels call for high-power measures. OPTOMAN is here to save the day with high reflectivity IBS mirror coatings designed for big \& scary ultrafast Yb:YAG, Yb:KYW/KGW, Yb doped fiber lasers.

- Low GDD performance.
- Optimized for high average power ultrafast laser systems.
- Absorption within coating < 1 ppm @ 1064 nm.
- Zero-phase shift behavior.

While high laser-induced damage threshold is a buzzword when talking femtosecond \& picosecond optics, it is not (only) the nominal LIDT value that matters. The separation of laser damage modes - catastrophic and color-change - is evident when measuring standard optics. The fatigue effect of color-change damage becomes even more significant for high-power mirrors after prolonged radiation ($>10^{3}$ pulses).

Color-change effect is an arch-enemy and a LIDT-limiting factor for ultrafast applications, and has to be eliminated in order to increase the lifetime of optics

Market-Standard Mirrors

Market-Standard High Power Mirrors

It is well known that absorption is the main cause of laser damage. Strategically working towards color-change elimination, OPTOMAN did a number of R\&D runs, aiming to optimize coating design, coating parameters as well as pre- and post- coating processes. Eventually, OPTOMAN was able to reduce coating absorption down to $\sim 1 \mathrm{ppm}$ for the s-polarization component and $\sim 2 \mathrm{ppm}$ for the p-polarization component:

Absorption @ $1064 \mathrm{~nm} \sim 1$ ppm for s-pol component and -2 ppm for p -pol component.

Measured by PCI technology.

This achievement has paved the way to develop a product specifically optimized for ultrafast laser applications - SuperHero League Mirrors featuring no color-change damage. The LIDT of these mirrors is defined only by the catastrophicdamage values which have also been boosted and are higher than marketstandard high-power mirrors.

Order this product from OPTOSHOP

- Very high LIDT
- No color-change damage
- Fully characterized

High confidence level $>0.7 \mathrm{~J} / \mathrm{cm}^{2}$

Wavelength: 1030 nm
Pulseduration (FWHM): 497.7 fs Repetition rate: 10 kHz AOI: 45°
Polarization: P
Beam diameter ($1 / \mathrm{e}^{2}$): $(176.8 \pm 4.8) \mu \mathrm{m}$

High confidence level $>1 \mathrm{~J} / \mathrm{cm}^{2}$

O Catastrophic95\% confidence interval

Wavelength: 1030 nm
Pulseduration (FWHM): 491.1 fs Repetition rate: 10 kHz AOI: 45°
Polarization: Linear S
Beam diameter (1/e²): $(177.4 \pm 3.6) \mu \mathrm{m}$

SuperHero League Mirrors are the upgraded version of OPTOMAN bestseller - ULLM5 mirrors.

Order this product from OPTOSHOP

- Perfect price-to-performance ratio
- Industry standard specifications
- Fully characterized

LIDT
Lifetime
Price

- - ○○
- ○○○ OOOO

High confidence level >0.4 J/cm²

Catastrophic	Wavelength: 1030 nm
95% confidence	Pulse duration (FWHM): 491.1 fs
interval	Repetition rate: 10 kHz
Color change	AOl: 45°
95% confidence	
interval	Polarization: Linear P

High confidence level >0.7 J/cm ${ }^{2}$

[^0]Wavelength: 1030 nm
Pulse duration (FWHM): 491.1 fs
Repetition rate: 10 kHz
AOI: 45°
Polarization: Linear S
Beam diameter $\left(1 / e^{2}\right):(177.4 \pm 3.6) \mu \mathrm{m}$

Reflected Group Delay Dispersion

IGDD Rsl<20 fs², IGDD Rpl<50 fs²

	Standard (ULLM5)	SuperHero League (ULLM5SHL)
Substrate	UVFS (ULCMSSHL	
Surface Quality, S1	10-5 S-D (RF-13830B)
Surface Flatness, S1	< $\mathrm{N} / 10$ @	m over CA
AOI	0° or 45°	hich ever ${ }^{\circ}$
Coating (IBS)	HRs>99.95\% \& HRp (Yes, custom b	\% @ 1010-1050 nm vidths available)
Laser Induced Damage Treshold	Femtosecond: $>0.4 \mathrm{~J} / \mathrm{cm}^{2}, 1030 \mathrm{~nm}, 500 \mathrm{fs}$, $10 \mathrm{kHz}, \mathrm{p}-\mathrm{pol}$ $>0.7 \mathrm{~J} / \mathrm{cm}^{2}, 1030 \mathrm{~nm}, 500 \mathrm{fs}$, 10 kHz , s-pol Picosecond: >2 //cm², $1030 \mathrm{~nm}, 10 \mathrm{ps}$, $10 \mathrm{kHz}, \mathrm{p}-\mathrm{pol}$ $>3 \mathrm{~J} / \mathrm{cm}^{2}, 1030 \mathrm{~nm}, 10 \mathrm{ps}$, 10 kHz , s-pol	Femtosecond: $>0.7 \mathrm{~J} / \mathrm{cm}^{2}, 1030 \mathrm{~nm}, 500 \mathrm{fs}$, 10 kHz , p-pol $>1 \mathrm{~J} / \mathrm{cm}^{2}, 1030 \mathrm{~nm}, 500 \mathrm{fs}$, 10 kHz , s-pol Picosecond: $>3 \mathrm{~J} / \mathrm{cm}^{2}, 1030 \mathrm{~nm}, 10 \mathrm{ps}$, $10 \mathrm{kHz}, \mathrm{p}-\mathrm{pol}$ $>5 \mathrm{~J} / \mathrm{cm}^{2}, 1030 \mathrm{~nm}, 10 \mathrm{ps}$, 10 kHz , s-pol

Working further towards reducing the total cost of ownership for our partners, we have invested in long-term degradation measurements, proving OPTOMAN SuperHero Power mirrors reliability and high-duty cycle.
These results aim to answer your concerns about long-term laser exposure consequences.

LIDT results

Catastrophic 1-on-1 LIDT	$1,70 \mathrm{~J} / \mathrm{cm}^{2}$
Catastrophic 10^{8}-on-1 LIDT	$1,119 \mathrm{~J} / \mathrm{cm}^{2}$
Color change $10^{8}-$-on-1 LIDT	$0,78 \mathrm{~J} / \mathrm{cm}^{2}$
Absorption (1070 nm, Linear S)	$<1 \mathrm{ppm}$
Absorption (1070 nm, Linear P)	$1,6 \mathrm{ppm}$

This measurement and extrapolation demonstrate the fluence levels of SuperHero Power mirrors according different irradiation time.

Basically, this measurement proves that if your laser's fluence is $\left\langle 0.5 \mathrm{~J} / \mathrm{cm}^{2}\right.$, your laser featuring SuperHero Power mirrors, could run non-stop longer than it takes for a student to finish his physics bachelor's degree.

OPTOMAN DOESN'T STOP HERE...

Keep an eye out for our technological developments that are still in progress. Coatings featuring super high LIDT with no colorchange degradation are under development. Preliminary R\&D figures:

LIDT > $1.2 \mathrm{~J} / \mathrm{cm}^{2}, 1030 \mathrm{~nm}, 500 \mathrm{fs}, 10 \mathrm{kHz}$, s-pol

Wavelength: 1030 nm
Pulse duration (FWHM): 500.3 fs
Repetition rate: 10 kHz
AOI: 45°
Polarization: Linear S
Beam diameter ($1 / \mathrm{e}^{2}$): $(176.0 \pm 1.1) \mu \mathrm{m}$

OPTICS FOR

TIISAPPHIRE LASERS

Ti: Sapphire lasers, featuring relatively broad emission wavelengths, typically between 700 nm and 900 nm , sometimes even $650-1100 \mathrm{~nm}$, are the tough challenge for optical coatings manufacturers. Especially when you combine such a broad spectrum together with high power few tens of femtoseconds pulses. However, optical components shouldn't cause a headache for laser manufacturers. So if you're still looking for durable, long-lasting, high LIDT optics for your Ti:Sapphire laser, congratulations - you're at the right place!

HRs>99.9\% @ 700-920 nm + HRp>99.9\% @ 730-870 nm, AOI=45 ${ }^{\circ}$ (low GDD)

If you're into Ti:Sapphire business and are aware of the offerings in the market, you'll probably be pretty impressed with what OPTOMAN has achieved in terms of LIDT:

Central Wavelength: 800 nm Pulse duration (FWHM): (47 ± 5) fs Repetition rate/frequency: 100 Hz Angle of incidence: 45°

Test type: S-on-1 (10k-on-1), R-on-1
Test environment: vacuum $\rightarrow 1,5 * 10-5$ mbar

S polarization LIDT: $1.397 \mathrm{~J} / \mathrm{cm}^{2}$ P polarization LIDT: 0.71 J/cm²

No color change

入人 IBS COATED OPTICS FOR ULTRA VIOLE [NTT LASERS

OPTOMAN has done quite a unique thing - optimized the IBS coating process to make low absorption and high longevity dielectric optical components for ULTRA VIOLE[n]T LASERS.

Main challenges that UV optics face:

- Low transparency due to absorption
- Scattering due to even tiny imperfections
- Laser damage and long-term degradation

Design examples

$\mathrm{HRa}>99.7 \%$ @ $343 \mathrm{~nm}, \mathrm{AOI}=45^{\circ}$.

For high power femtosecond applications.

Measured average reflectance spectrum, $\mathrm{AOI}=45^{\circ}$.

HR @ 343 nm for ultrafast laser applications:
LIDT (catastrophic): >0. $484 \mathrm{~J} / \mathrm{cm}^{2} @ 343 \mathrm{~nm}, 300 \mathrm{fs}$, 107- on - 1
LIDT (color change): >0.332 J/cm² @ $343 \mathrm{~nm}, 300 \mathrm{fs}$, 107- on-1

Coatings (IBS):

S1: Rs>99.7\% \& Tp>95\% @ $343 \mathrm{~nm}, \mathrm{AOI}=45^{\circ} \pm 2^{\circ}$
Extinction ratio: Tp/Ts>300:1

~UM~ GTI AND CHIRPED
 MN MIRRORS

TheGires-Tournois Interferometer(GTI) mirroris a dielectric dispersive mirror with a spatial variation of the layer thickness values. Such mirrors are used for dispersion compensation in mode-locked lasers, for example.

- Dispersive mirrors - chirped and GTI design;
- Spectral range $250 \mathrm{~nm}-5000 \mathrm{~nm}$;
- Negative GDD down to -5000 fs²;
- Low (flat) or predefined GDD behavior;
- LIDT >0.3 J/cm² @ 1030nm, 50 fs, 150 kHz;
- LIDT >0.25 J/cm² @ 266 nm, $180 \mathrm{fs}, 10 \mathrm{kHz}$.

GDD IS BANDWIDTH

It is important to note that bandwidth and GDD are closely connected. A high value of negative GDD results in a very narrow bandwidth. For a better understanding, see the graph below.

GDD vs Wavelength for different chirped mirror designs. A more negative GDD value results in a narrower operational bandwidth.

Below graph indicates GDD dependence on operational bandwidth at a fixed coating thickness of $10 \mu \mathrm{~m}$. Stars on the graph indicate experimentally produced designs,

Theoretical design:
$10 \mu \mathrm{~m}$
Produced coatings:
$10.3 \mu \mathrm{~m}$
. $12.2 \mu \mathrm{~m}$
$11.9 \mu \mathrm{~m}$
$9.9 \mu \mathrm{~m}$
Relation between dispersive mirror operational bandwidth and average achievable GDD.

Source:
PERVAK, V., et al. Empirical study of the group delay "Optics express" , 2013, 21.15: 18311-18316. dispersion achievable with multilayer mirrors.

Design examples

HRs > 99.5\% @ 1320 nm , AOI 45°, GDD_Rs $-5000 \pm 2500 \mathrm{fs}^{2}$ @ $1315-1325 \mathrm{~nm}$, AOI 45°

Rp \& Rs >99.8\% @ 1010-1050 nm, AOI=0-10 ${ }^{\circ}$
GDD_avg $=-600 \mathrm{fs}^{2} \pm 150 \mathrm{fs}^{2}$ @ 1025-1055 nm, AOl=O-10

Matching chirped mirror pairs give a dispersion compensation effect for ultrafast laser pulses, for example in OPCPA systems. A pair of precisely designed optical mirrors cancel out oscillations of each other by featuring out-of-phase GDD.

Design examples

HR>99.8\% @ 980-1080 nm, AOI=5 ${ }^{\circ}$ (per mirror); GDD $=-400 \mathrm{fs}^{2}+/-80 \mathrm{Os}^{2} @ 980-1075 \mathrm{~nm}, \mathrm{AOI}=5^{\circ}$ (per pair)

Average GDD Performance

A dielectric fight for pulse duration downscaling and energy upscaling IN MULTIPASS CELLS (MPC)

Nonlinear compression of laser pulses with tens of millijoule energy in a gas-filled multipass cell is a promising approach to realize a new generation of high average power femtosecond sources.

The whole approach relies on efficient HR mirrors, which enable to have a large number of reflections with low losses.

OPTOMAN developed dielectric mirrors optimized specifically for MPC application. OPTOMAN offers flat, concave, and convex broadband mirrors with high reflectivity (R>99.99\%), high LIDT (>0.69 J/cm² @ $1030 \mathrm{~nm}, 200 \mathrm{fs}, 10^{5}-\mathrm{ON}-1$) and low and smooth GDD.

Design examples

HR>99.99\% @ 970-1090 nm, AOI= 0° (IGDDrI < $20 \mathrm{fs}^{2} @ 980-1080 \mathrm{~nm}$)

HR>99.95\% @ 950-1130 nm, AOI=00 (IGDDrl < $20 \mathrm{fs}^{2}$ @ 980-1090 nm)

Features

- Mirrors available in spectral range of 400-2000 nm;
- HR (in gas) > 99.99\%;
- Absorption: <1 ppm @ 1030 nm.
- LIDT: >0.69 J/cm² @ $1030 \mathrm{~nm}, 200 \mathrm{fs}$, 10^{5}-on-1

Higher LIDT or broader spectrum?

LIDT measurement

Test mode	Threshold (Catastrophic)			Threshold (Color mode)		
1-on-1	0865	+0.030	$1 / \mathrm{cm}^{2}$	0.790		$1 / \mathrm{cm}^{2}$
1-on-1		-0.030	J/cm	0.790	-0.028	J/cm
10-on-1	0.799	+0.019	$\mathrm{J} / \mathrm{cm}^{2}$	0.777	+0.041	1/cm ${ }^{2}$
		-0.019			-0.040	
102-on-1	0.742	+0.019	$\mathrm{J} / \mathrm{cm}^{2}$	0.735	+0.027	J/cm ${ }^{2}$
		-0.019	J/cm	0.735	-0.026	J/cm ${ }^{2}$
		+0.019			+0.027	
103-on-1	0.742		J/cm ${ }^{2}$	0.735		J/cm ${ }^{2}$
		-0.019			-0.026	
104-on-1	0.690	+0.015	J/cm ${ }^{2}$	0.659	+0.034	J/cm ${ }^{2}$
		-0.015		0.659	-0.033	J/cm ${ }^{2}$
105-on-1	0.690	+0.015	J/cm ${ }^{2}$	0.523	+0.020	J/cm ${ }^{2}$
		-0.015			-0.020	

Wavelength: 1030 nm
Pulse duration (FWHM): 181.8 fs
Repetition rate: 50 kHz
AOI: 0°
Polarization: Linear
Beam diameter ($1 / \mathrm{e}^{2}$): $(188.3 \pm 0.9) \mu \mathrm{m}$

OPTOMAN STANDARD MPC MIRROR

Order this product from OPTOSHOP

Material: UVFS

Diameter: $76.2 \mathrm{~mm}+0 /-0.2 \mathrm{~mm}$
Edge thickness: $12.5 \mathrm{~mm}+/-0.2 \mathrm{~mm}$
ROC S1 (concave): $300 \mathrm{~mm}+/-0.5 \%$
Surface quality, S1: 20-10 S-D MIL-PRF-13830B
Surface irregularity, S1: < $\lambda / 8$ @ 633 nm
Surface 2: commercial polish
Centration: <3 arcmin
Protective chamfer: $0.4-0.6 \mathrm{~mm} \times 45^{\circ}$
Arrow marks to S1, concave

Coatings (IBS):

S1 (arrow marks, CV): HR>99.99\%
@ 980-1080 nm, AOI=0
IGDDrl < $50 \mathrm{fs}^{2}$ @ 980-1080 nm
S2: uncoated

[部
 EXTREME LOW-LOSS COATINGS

Absorption and scattering are the main limiting factors when trying to manufacture perfect coatings. But what if absorption loss and surface roughness were limited down to <2 ppm and <2 \AA respectively? Pretty close to perfect, right? This has been an object of OPTOMAN R\&D activities for the past few years. That is why OPTOMAN can manufacture Super Mirrors, 10000:1 contrast Thin Film Polarizers, R<0.01\% AR Coatings, and many more extremely good stuff.

Roughness measurement results of super polished (A, B, C, D) and standard commercial grade substrates.

E* Standard commercial substrate.
Light absorption is another loss driver and is responsible for unwanted thermal effects in high power laser systems. Keeping absorption rates below 2 ppm, reflectance value above 99.998% is achievable as well as component heating effect is negligible if existing at all.

Roughness plays a critical role in managing total integrated scatter to be as low as possible. The big goal is to stay below $2 \AA$ RMS value, which is possible with fancy super-polished substrates.

Longitudinal photothermal absorption measured of HR@1064 nm and HR@532 nm coatings.

HR@532 nm

SUPER MIRRORS

Dielectric mirrors with extremely low losses become Super Mirrors. Their superpower of high reflectance comes from the OPTOMAN's continuous effort to add more and more nines after the point when talking about reflectance values.

Standard IBS coated mirrors and super mirrors

CRD measurement results:
HR>99.998\% @ $532 \mathrm{~nm}, \quad$ HRs>99.99857\% \&
AOI=O \quad HRp>99.99816\% @ 1064 nm ,
Total loss=40 ppm
HR>99.9983\% @ 638 nm, $\mathrm{AOI}=0^{\circ}$
Total loss=17 ppm AOI $=45^{\circ}$

Total loss $=14.3$ ppm (S-pol)
and 18.4 ppm (P-pol)
HR>99.9997\% @ 1064 nm, AOI= 0°
Total loss $=3 \mathrm{ppm}$

Disclaimer: Reflectance values for Super Mirrors illustrate the very best achieved values and current max level of capabilities.

LOW LOSS ULTRAFAST MIRRORS

IOW ABSORPTION AND HIGH EFFICIENCY

Order this product from OPTOSHOP

Design examples

Coating code: LLM134

Coatings (IBS)

HR>99.995\% @ $1030 \mathrm{~nm}, \mathrm{AOI}=0^{\circ}$

MEISURING CHPIEIIIIES FOR IASER OPTICS

As with great laser power comes great responsibility for coaters, OPTOMAN acts responsibly during the whole supply chain process, including post-coating quality checks. OPTOMAN is carefully inspecting the quality of the optics produced, so the customer could enjoy seamless usage of optical components, without investing his time and effort to ensure that optics are compliant to the specifications.

Measuring capabilities:

WHERE DOES OPTOMAN WORK?

OPTOMAN spends a significant amount of time in manufacturing facilities, therefore he wants to show you how does his $217 \mathrm{~m}^{2}$ ISO7 certified workplace look like and what are the key processes that allow him to offer you top-notch optical components.

Preparation of substrates

Firstly, thorough preparation of substrates is needed in order to make quality optical coatings as you don't want to start the coating process on unclean substrates:

OPTOMAN uses a 7-stage fully automated cleaning process, which makes the preparation of substrates efficient and effective.

Coating deposition

As with great laser power comes great responsibility for coaters, OPTOMAN uses only the most advanced thin film deposition technology - Ion Beam Sputtering (IBS), which allows him to exploit his superpowers. IBS has the same meaning to OPTOMAN as Mjölnir hammer has to Thor. So yes, it's pretty important and OPTOMAN does not shy investments to have the best IBS machines in order to provide the best optics. The area where IBS machines are is extra clean, meeting the requirements of ISO 5 .

Quality inspection and metrology

OPTOMAN doesn't call optical components high quality by default. Measurements and inspections are needed to define the quality. OPTOMAN is equipped to do it.

Final optical component

Ta-da! OPTOMAN optics are ready to fulfill their purpose - become friends with your laser beam.

RED AGTITIILS

- OPTOMAN heavily invests in R\&D activities.
- OPTOMAN cooperate with leading research institutions for extensive characterization and proof of concepts.

Ongoing R\&D projects:

- INTENSITY - Development of low total loss coatings for VIS-NIR range.
- UNIPULSE - Development of high LIDT coatings for ps-fs applications for VIS-NIR range.
- INOSTART - Development of MID-IR (1-5 $\mu \mathrm{m}$) coatings based on oxide / semiconductor materials.
- Neo2Fast - Development of broadband mirrors with High LIDT performance for multi-pass cells sub-10 fs applications.
> "INTELIGENCE IS
> A PRIUILEEE, AND IT NEEDS TO BE USED FOR THE GREATER GOOD OF LASER PEOPIE."

Dr. Otto Octavius

Why IBS?

Ion Beam Sputtering (IBS) is a technique when the layer of a desired material is formed by molecules extracted from the target material by a highly energetic and precisely controlled ion beam.

As with great laser power comes great responsibility for coaters, OPTOMAN is equipped by IBS machines in order to meet the most demanding requirements from most demanding industrial and scientific applications.

Inherently stable sputtering process

A very stable ion beam combined with high vacuum (~1×10-4 mbar during the deposition) and ultra-high purity metal targets (>99.99\%) result in a super stable deposition process. It enables a fully automatic deposition and the ability to precisely control refractive indices and thicknesses of each deposited layer.

High resistance to laser irradiation

By choosing proper deposition parameters and ensuring cleanliness in every step of the manufacturing chain, OPTOMAN is able to produce coatings with very low defect densities. That is the reason why IBS coatings exhibit excellent resistance to laser irradiation!

Bulk-like packing density

Due to the bulk-like layer's density, IBS coatings are completely immune to mechanical wear as well as changes in ambient temperature and humidity and ensure smooth operation of your laser under any circumstances. Moreover, OPTOMAN coatings may be used in harsh environments and even in outer space with no change in performance!

Scattering? What's that?!

Due to the near-bulk IBS coating density, the surface roughness of the coated component is mainly determined by the initial substrate roughness. Combine this with the completely amorphous coating layers and you will end up with almost scatter-free optics!

Forget short duty cycle issues!

It is well known that absorption losses are the main cause of thermal effects and a shortduty cycle. A high and stable vacuum, extremely pure target materials, near bulk coating density, spatially separated sputtering and material condensation processes allow to form almost contamination-free layers with the absorption losses bellow 2ppm.

If you use high repetition rate fs, or a CW system and longevity is your concern, give OPTOMAN coatings a try and you will be surprised!

OPTOMAN acts responsibly during the whole product lifecycle.

It starts from the thorough selection and assessment of suppliers according to OPTOMAN values.

OPTOMAN has optimized production processes to ensure a high yield of production and clean optics.

OPTOMAN also reuses optical components not compliant to specifications by repolishing them to limit waste.

LOONNG FOR STHNDIRDIKED solvilons?

 TO ADUANCED LASER OPTICS
OPT(1DMAN

YOUR SIDEKICK FOR LASER OPTICS DEVELOPMENT

OTHER CAPABILITIES

OPI(1)MAN

CONTICT US

Ukmergés g. 427, LT-14185, Vilnius, Lithuania info@optoman.com

[^0]: - Catastrophic

